FIRST TERM EXAMINATION (14 SEPT 2017) MATHEMATICS

Class - X

Time Allowed: 3 hours

Maximum Marks: 80

	SECTION-A	
	Question numbers 1 to 6 carry one mark each	
1	If a and b are relatively prime numbers, then what is their HCF?	1
2	If the product of zeroes of the quadratic polynomial $f(x) = x^2 - 4x + k$, then find k.	1
3	Find the value of k for which the system of equations $kx - y = 2$; $6x - 2y = 3$ has no solution.	1
4	If the common difference of an AP is -2 find the value of $a_{10} - a_5$.	1
5.	If a, b, c are in A.P. Find b.	1
6.	Find the value of θ if $2\cos 3\theta = 1$.	
	SECTION-B	
	Question numbers 7 to 12 carry two marks each.	
7.	Can the number 6^n , n being a natural number, end with the digit 0? Give reason.	2
8.	Use Euclid's division algorithm to find HCF of 1756 and 144.	2
9.	If α and β are the zeroes of the quadratic polynomial $p(y) = 5y^2 - 7y + 1$ then find the value	2
	of $\frac{1}{\alpha} + \frac{1}{\beta}$	
10.	Determine the 10th term from the end of an AP 4, 9, 14, 254.	2
11.	If $\tan A = \sqrt{2} - 1$, show that $\sin A \cos A = \frac{\sqrt{2}}{4}$	2
12.	If $\tan 3A = \cot (A - 26)$, $3A < 90^{\circ}$ then find the value of $\angle A$	2
	SECTION-C	
	Question numbers 13 to 22 carry three marks each.	
13.	Prove $\sqrt{5}$ is an irrational number hence show that $3+2\sqrt{5}$ is an irrational number.	3
14.	If the zeroes of the polynomial $f(x) = x^3 - 3x^2 + x + 1$ are $a - b$, a , $a + b$ find a and b.	3
15.	A fraction becomes $\frac{4}{5}$, if 1 added to both numerator and denominator. If, however 5 is	3
	subtracted from both numerator and denominator the fraction becomes $\frac{1}{2}$, what is the	
	fraction?	

Which term of the sequence $20,19\frac{1}{4},18\frac{1}{2},17\frac{3}{4}$ is the first negative term?

3

17. Without using trigonometric tables, evaluate $\frac{\sec 39^{0}}{\cos ec \, 51^{0}} + \frac{2}{\sqrt{3}} \, \tan 17^{0} \, \tan 28^{0} \, \tan \, 52^{0} \, \tan 73^{0} - 3 \, \left(\sin^{2} 31^{0} + \sin^{2} 59^{0} \right)$

3

18. If $\sin(A+B) = 1$ and $\sin(A-B) = \frac{1}{2}$ $0^{\circ} < A+B < 90^{\circ}$, A > B Find the value of A and B.

19. ABCD is a rhombus. Prove that $AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2$

2

20. If AD and PM are the medians of triangles $\triangle ABC$ and $\triangle PQR$, respectively where 3 $\triangle ABC$ $\triangle PQR$, prove that $\frac{AB}{PQ} = \frac{AD}{PM}$

3

21. P and Q are the mid points of the sides CA and CB respectively of a $\triangle ABC$, right Angled at C. Prove that $4(AQ^2 + BP^2) = 5AB^2$

3

22. From an external point P, two tangents
PA and PB are drawn to circle with
centre O. Prove that OP is the perpendicular
bisector of AB.

SECTION-D

Question numbers 23 to 30 carry four marks each.

- 23. Show that the cube of any positive integer is of the form 4m, 4m+1, or 4m+3 for some integer 4
- 24. What must be added to $f(x) = 4x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is 4 divisible by $g(x) = x^2 + 2x 3$.
 - 4

- 25. Solve graphically: x y = 1
 - 2x + y = 8

Shade the area bounded by two lines and y-axis. Also, determine this area

26. Show $a_1, a_2, a_3, \dots a_n$ from an A.P. where a_n is defined as $a_n = 9 - 5n$. Also find the sum of the 4 first 15 terms.

- Prove that, $\frac{\sin \theta \cos \theta + 1}{\sin \theta + \cos \theta 1} = \frac{1}{\sec \theta \tan \theta}$
- 28. If $\sin \theta = \frac{a}{b}$, find $\sec \theta + \tan \theta$ in term of a and b.
- 29. (i) Prove that ratio of the areas of two similar triangles are equal to the ratio of the squares of 4 any two corresponding sides.
 - (ii) Hence if $\triangle ABC \sim \triangle DEF$ such that AB = 1.2cm and DE = 1.4cm. Find the ratio of areas of $\triangle ABC$ and $\triangle DEF$
- 30. Prove that the parallelogram circumscribing a circle is rhombus.