LESSON PLAN (TERM-1)

EVS-1. Class 5 Session -2025-26

UNIT I:	DIVERSITY		
	1.	Animal Classification	9
	2.	Microorganisms	25
UNIT II:	CYCLES		
	3.	Reproduction in Plants	38
	4.	Reproduction in Animals	54
	5.	States of Matter	64
UNIT III:	SYSTEMS		
	6.	Human Body Systems	79
	7.	Transport System of a Plant	96

Subject: Environmental Studies (EVS-1)

Class: 5

APRIL

Chapter: 1 — Animal Classification

Number of days required to complete the topic-12

Learning Outcomes

Knowledge Objective: Define vertebrates, invertebrates, diurnal, nocturnal, crepuscular, cold-blooded, and warmblooded animals.

Understanding Objective: Differentiate animals based on backbone, activity time, and temperature regulation.

Application Objective: Classify animals into correct categories.

Skill Objective: Develop observation, classification, and reasoning skills.

Previous Knowledge Testing Ask simple questions:

Name an animal active at night.

Does a fish have a backbone?

Why do reptiles bask in the sun?

Teaching Aids

Chalk, duster, animal picture, smartboard, videos.

Pedagogical Strategies

Concept mapping and group discussions.

Use of visual aids and real-world examples.

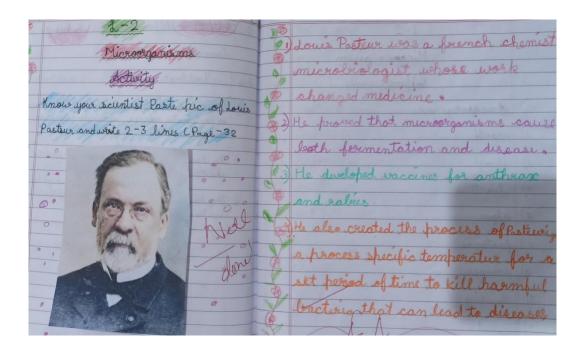
Storytelling for nocturnal/diurnal animals.

Role-play different animals.

Interactive quizzes and classification games.

Short videos for reinforcement.

Hands-on Activities


Sorting animals into categories using pictures.

Drawing a classification chart.

Role-playing as animals based on time of activity

Art Integration Drawing vertebrates, invertebrate

Draw or paste picture of 'Birdman of India' Salim Ali and write a few lines on him.

Interdisciplinary Linkages

Science: Adaptations and survival,

Language: A few lines on Salim Ali.

Art: Drawing vertebrates and invertebrates

Infusion of Life Skills

Observation skills, critical thinking, teamwork, creativity.

Recapitulation

Quick oral quizzes.

Matching columns.

"Who Am I?" riddles.

Resources including ICT

Smartboard, animated videos, online quizzes

Assessment Items

Formative: Observation during tasks, quick oral questions.

Summative: Classification worksheet, short answer

questions

Feedback and Remedial Teachings

Immediate feedback.

More visuals and examples for better understanding.

Peer assistance for learners who need help.

Inclusive Practices

Visual, verbal, and hands-on learning options

Mixed ability group activities.

Full Participation without Discrimination

Equal opportunity for all.

Respecting every student's contribution.

<u>Chapter: 2 — Microorganisms</u>

Number of days required to complete the topic-12

Learning Outcomes

Knowledge Objective: Define microorganisms and list their types (bacteria, fungi, protozoa, algae, viruses).

Understanding Objective: Explain the helpful and harmful roles of microorganisms.

Application Objective: Identify everyday examples where microorganisms are useful or harmful.

Skill Objective: Develop observation, classification, and analytical thinking skills.

Previous Knowledge Testing

Ask:

Have you seen bread growing greenish patches?

Why do we wash hands before eating?

Can tiny living things make us sick?

Teaching Aid:

Smartboard, images of microorganisms, magnified microscope pictures, bread, chalk, duster

Pedagogical Strategies

Concept mapping of types of microorganisms.

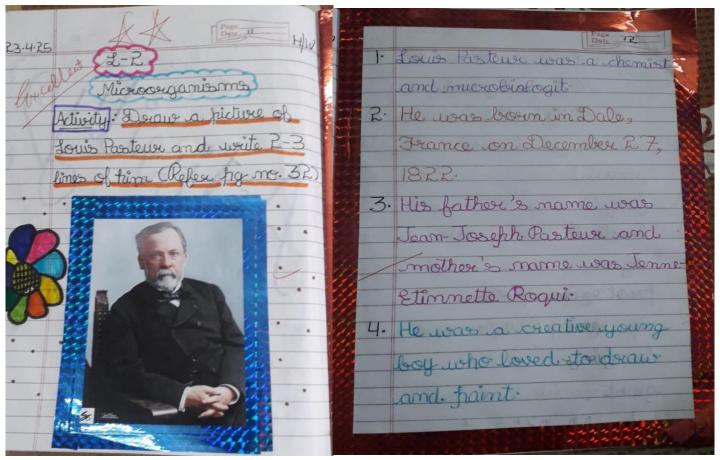
Group discussions on uses and harms.

Real-life examples: curd formation, food spoilage, diseases.

Showing videos/animated clips.

Think-Pair-Share to discuss good and bad microbes.

Simple experiments (observe bread mold at home).


Hands-on Activities

Sorting Game: Classify microorganisms into useful and harmful.

Home Observation: Find examples like spoiled bread or curd.

Art Integration

Paste a picture of Louis Pasteur and write a few lines on him.

Interdisciplinary Linkages

Science: Health and hygiene.

Language: Write a few lines on Louis Pasteur

Art: Paste a picture of Louis Pasteur

Infusion of life skill

Hygiene awareness, critical thinking, observation, creativity.

Recapitulation

Quick quiz on types and examples.

Match-the-following on microorganism types and uses.

Resources including ICT

Short animated videos on microorganisms.

Smartboard slides, online quizzes.

Assessment Items

Formative: Group discussion evaluation, participation in activities.

Summative: Worksheets on classification, short answers on uses and harms.

Feedback and Remedial Teachings

Immediate feedback after activities.

Extra visual examples for difficult concepts.

Peer explanation for better understanding.

Inclusive Practices

Multiple learning modes: visual, auditory, and kinesthetic.

Grouping students in mixed ability teams.

Full Participation without Discrimination

Equal chances to participate in discussions and activities.

Respect and encouragement for every student's contribution.

MAY

Chapter: 3 — Reproduction in Plants

number of days required to complete the topic-12-14

Learning Outcomes

Knowledge Objective: Identify parts of a seed and types of seeds (monocot and dicot).

Understanding Objective: Understand the processes of germination, seed dispersal, pollination, and fertilization.

Application Objective: Explain how plants reproduce through different methods including vegetative parts.

Skill Objective: Develop observation, comparison, sequencing, and drawing skills.

Previous Knowledge Testing

Ask: Have you ever seen a seed grow into a plant?

What happens when a seed is placed in moist soil?

Do all plants grow from seeds?

Teaching Aids Real seeds (bean, maize), seed models or charts, cotton and water for germination demo, smartboard/video clips, charts of plant reproduction processes, flower model.

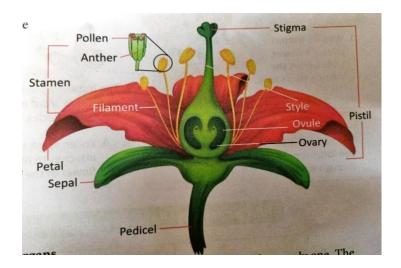
Pedagogical Strategies

Begin with real seed observation to introduce seed parts.

Use comparison charts and models to explain monocot vs. dicot seeds.

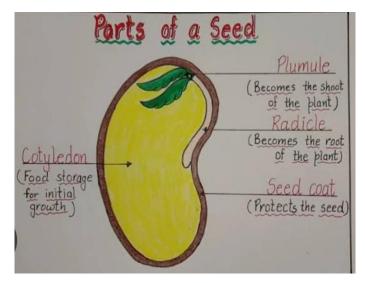
Demonstrate germination with soaked seeds.

Use a storytelling or flow diagram method to explain pollination and fertilization.


Display real-life examples of seed dispersal (e.g., dandelion, mango).

Group discussions and interactive questioning to assess understanding.

Hands-on Activities Seed Dissection: Identify seed coat, cotyledons, and baby plant.


Germination Observation: Soak seeds and track changes over days.

Labelling of parts of a flower

Art Integration

Draw and label parts of a seed.

Create a seed dispersal collage using dried seeds and pictures.

Interdisciplinary Linkages

Science: Biology of plant reproduction.

Art: Drawing and model making. Math: Measuring growth of seedlings.

Infusion of Life Skills

Observation, care for nature, critical thinking, curiosity, patience.

Recapitulation

Q&A round on seed types and reproduction methods.

Group quiz: monocot or dicot?

Resources including ICT

Animated videos on pollination and fertilization.

labelling activities in smart class

Interactive smartboard games on seed dispersal and plant parts.

Assessment Items

Formative: Participation in activities, group discussions.

Summative: Label parts of a seed diagram.

Identify and differentiate monocot and dicot seeds.

Short answers: Define pollination, fertilization, seed dispersal.

Feedback and Remedial Teachings

Use real objects and simpler language for struggling learners.

Reinforce using revision games and paired learning.

Provide one-on-one support where needed.

Inclusive Practices

Visual, verbal, and hands-on activities to support varied learning styles.

Peer learning groups and buddy support.

Full Participation without Discrimination

Equal opportunity for all students to participate in experiments, activities, and responses.

Appreciation for every student's effort in a respectful environment.

Chapter: 4 — Reproduction in Animals

number of days required to complete that topic-10

Learning Outcomes

Knowledge Objective: Recognize different methods of reproduction in animals, including laying eggs and giving birth.

Understanding Objective: Understand how some animals reproduce with one parent and how certain organisms regenerate or bud.

Application Objective: Compare various reproduction methods and identify examples in nature.

Skill Objective: Develop observation, classification, and reasoning skills.

Previous Knowledge Testing

Ask:

Do all animals lay eggs?

Have you seen animals taking care of their young ones?

Can you name animals that don't give birth?

Teaching Aids

Pictures of egg-laying animals and mammals (e.g., birds, fish, cat, dog).

Chart showing reproduction in amoeba, hydra, planaria.

Videos/animations on budding and regeneration.

Smartboard, flashcards.

Pedagogical Strategies

Begin with known animals to introduce egg-laying vs. live birth.

Use storytelling method (e.g., life of a chick) to make concepts relatable.

short videos to explain budding, regeneration, fragmentation.

Encourage student questions and peer teaching moments.

Hands-on Activities

Sorting Game: Classify animals into "lay eggs" and "give birth".

Model Making: Use clay to model budding in hydra or planaria fragmentation

Art Integration

Paste pictures of animals that lay eggs and animals that give birth to young ones.

Paste a picture of Jane Goodall who is the popular anthropologist and write 2 to 3 lines on her.

Interdisciplinary Linkages

Science: Biology and animal life.

Language: Description of animal care and reproduction

process.

Art: Drawing life cycles and diagrams.

Infusion of Life Skills

Empathy (animals caring for young), observation, curiosity, creative expression.

Recapitulation

Quick Q&A: Which animals lay eggs?

True/False: "Amoeba lays eggs."

Rearranging steps in animal life cycle.

Resources including ICT

Animated videos on different methods of reproduction.
Online interactive games for classifying animals.

Assessment Item Formative: Observation in activities, discussion participation.

Summative: Fill in the blanks: e.g., "Hydra reproduces by ____."

Diagram-based questions on budding/regeneration.

Match animals to reproduction methods.

Short answer: Define fragmentation or give an example of a mammal.

Feedback and Remedial Teachings

Use simple examples or pictures for difficult topics like budding.

Reinforce through repeat videos or group re-teaching.

Extra worksheets for practice.

Inclusive Practices

Use varied media (visual, hands-on, verbal).

Encourage all learners with differentiated group roles.

Full Participation without Discrimination

Equal participation in games, questions, and model-making.

Respectful atmosphere where all ideas are heard and valued.

JULY

Chapter -5:States of Matter

Number of days required to complete that topic-12-14

Learning Outcomes

Knowledge Objective: Identify the three main states of matter and types of solutions.

Understanding Objective: Understand the processes involved in interconversion of states and the role of water as a universal solvent.

Application Objective: Apply methods of separating soluble and insoluble impurities from water.

Skill Objective: Develop observational, analytical, and conservation skills.

Previous Knowledge Testing

Ask:

What happens when you boil water?

Have you mixed sugar or salt in water?

How do you clean muddy water?

Teaching Aids Ice cubes, beaker, candle, salt, sugar, sand, sieve, filter paper, funnel, chart of water cycle, smartboard animations.

Pedagogical Strategies

Inquiry-based learning using real materials (e.g., salt water and muddy water).

Interactive discussion to explain interconversion with everyday examples.

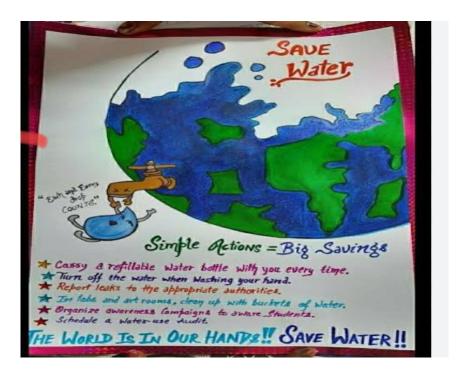
Demonstration of separation methods: filtration and evaporation.

Use of diagrams, flowcharts, and group comparison tasks.

Water conservation role play or pledge to create personal connection.

Hands-on Activities

Experiment: Melt ice, boil water, show condensation.


Solution Making: Make salt and sugar solutions, observe solubility.

Separation Activity: Filter muddy water using cloth/filter paper.

Art Integration

Draw water cycle.

Poster-making on "Save Water" campaign.

Interdisciplinary Linkages

Geography: Water cycle and conservation.

Art: Drawing, poster-making.

Math: Measuring liquids and solids in experiments.

Infusion of Life Skills

Conservation awareness, critical thinking, decision-making, scientific observation.

Recapitulation

Oral quiz: Which process converts liquid to gas?

Rearranging: Steps of evaporation \rightarrow condensation \rightarrow collection.

Resources including ICT

Animated videos on states of matter, evaporation, filtration.

Online simulation of separating mixtures.

Assessment Items

Formative: Observation of experiment participation, questioning.

Summative: MCQs on states of matter.

Fill in the blanks: "Evaporation changes liquid into ____."

Label water cycle diagram.

Short answers on separating impurities.

Feedback and Remedial Teaching

Reteach using slower pace or repeated experiments.

Use buddy system to help weaker students grasp content.

Inclusive Practices

Provide both verbal and visual instructions.

Encourage teamwork and mutual support in experiments.

Full Participation without Discrimination

Equal roles in group work and practical tasks.

Safe and respectful environment where every child is valued.

Chapter- 6 Human Body Systems

number of days required to complete the topic-10 -12

Learning Outcomes

Knowledge Objective: Identify major systems in the human body and their basic parts.

Understanding Objective: Understand the roles of the skeletal, muscular, circulatory, nervous, and respiratory systems.

Application Objective: Relate the functions of body systems to daily body movements and actions.

Skill Objective: Enhance observation, explanation, diagram labeling, and logical reasoning skills.

Previous Knowledge Testing

Ask questions like:

What helps you move your arm?

What happens when you breathe in?

Have you seen your heartbeat or felt your pulse?

Teaching Aids

Human body system charts and 3D models, Smartboard for animations and videos, Skeleton model

Pedagogical Strategies

Use storytelling and body movements to explain functions of systems

Explain joints and movement using role-play

Use analogy method (e.g., brain as computer, heart as pump)

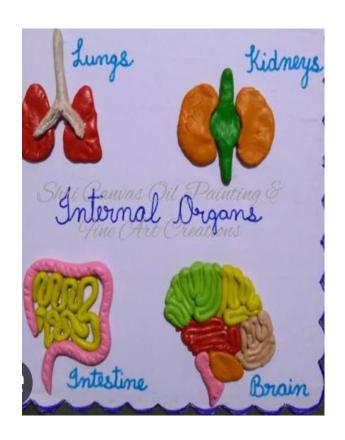
Compare and contrast tables (e.g., types of muscles, types of nerves)

Encourage peer questioning and group activities

Hands-on Activities

Feel your heartbeat and count pulses

Simple breathing exercise to feel lung expansion


Role-play: nervous system sending messages

Identify types of joints in your own body (elbow, neck, etc.)

Draw and label brain parts and lungs

Art Integration Make models of body parts using clay or chart paper!

Make a Brain cap

Interdisciplinary Linkages

Math: Counting pulse, symmetry in body

Art: Drawing systems, model making

Physical Education: Body movement and posture

Infusion of Life Skills

Body awareness and health consciousness

Coordination and teamwork

Decision making through understanding reflex action

Recapitulation

Rapid fire quiz

Jumbled diagrams for re-arranging parts

Resources including ICT

Animated videos on organ systems

Short quiz apps/games on smartboard

Assessment Items

Formative: Observation of participation in activities

Responses to class questions

Summative: Label diagrams (e.g., brain, heart, lungs)

MCQs and fill in the blanks

Short answer:

What is the function of the cerebrum?

What is a reflex action?

Name the types of nerves.

Feedback and Remedial Teaching

Use simplified diagrams and repeat explanations

Peer support and buddy reading

Reinforce concepts through visual aids

Inclusive Practices Group activities to support different learners

Full Participation without Discrimination

Every student encouraged and appreciated

Equal access to all learning materials and activities

AUGUST

Chapter-7 Transport System of a Plant

Number of days required to complete the topic-10

Learning Outcomes

Knowledge Objective: Identify the transport system in plants (xylem and phloem) and humans (arteries and veins).

Understanding Objective: Understand the functions of xylem and phloem in plants and arteries and veins in humans.

Application Objective: Compare the transport system in plants and humans with examples.

Skill Objective: Develop observation, comparison, classification, and diagram labeling skills.

Previous Knowledge Testing

Ask: How do plants get water from the soil?

How does blood travel in our body?

Can plants eat food like we do?

Teaching Aids

Charts of plant structure showing xylem and phloem

Diagram of human circulatory system

Flashcards: arteries, veins, xylem, phloem

Real plant stem, magnifying glass, colored water experiment

Pedagogical Strategies

Use of comparative learning to show similarities and differences

Visual explanations using diagrams and animation

Inquiry-based learning: "What would happen if water didn't reach the leaves?"

Group discussion to connect plant and human systems

Use of analogies (e.g., xylem like a straw, arteries like highways)

Hands-on Activities

Capillary action experiment: Dip a white flower or celery in colored water to show how water move.

Group chart making: Compare xylem vs. phloem and arteries vs. veins

Observation walk: Find different plant parts and trace water flow

Art Integration

Draw and color the transport system of a plant and human Leaf print artwork showing how water travels to leaves

Interdisciplinary Linkages

Geography: Water absorption and flow in soil

Math: Symmetry in leaf veins and blood vessels

Art: Diagram drawing

Infusion of Life Skills

Awareness of plant and human health

Observation and analytical thinking

Environmental responsibility (plants need water too!)

Recapitulation

Quiz: Xylem transports ____?

Table activity: Fill in differences between plant and human

transport systems

Match columns: Arteries - Blood, Xylem - Water

Resources including ICT

Animated video showing water movement in plants

Interactive diagram of circulatory system

Assessment Items

Formative: Group discussion participation, quiz

Summative: MCQs and fill in the blanks, Label plant and

human transport system

Short answers:

What does phloem carry?

Name one similarity and one difference between xylem and arteries.

Feedback and Remedial Teaching

Use real-life examples and revise terms with images

Slow learners supported with simplified charts

Inclusive Practices

Pair and group work to support varied learning styles

Full Participation without Discrimination

Equal opportunities for each child to engage in drawing, explanation, and experiments

Respectful environment with support and encouragement for all learners