SUMMATIVE ASSESSMENT - II, 2016-17 MATHEMATICS Class - IX

Time Allowed : 3 hours

Maximum Marks: 90

General Instructions:

1. All questions are compulsory.
2. The question paper consists of 31 questions divided into four sections A, B, C and D. Section-A comprises of $\mathbf{4}$ questions of $\mathbf{1}$ mark each; Section-B comprises of $\mathbf{6}$ questions of $\mathbf{2}$ marks each; Section-C comprises of $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each and Section-D comprises of $\mathbf{1 1}$ questions of $\mathbf{4}$ marks each.
3. There is no overall choice in this question paper.
4. Use of calculator is not permitted.

SECTION-A

Question numbers 1 to 4 carry one mark each.

1 Construct an obtuse angle and draw its bisector.
Find the number of small cubes with edge 20 cm that can be accommodated in a cubical box of 1 2 meter edge.
$3 \quad x=0$ is the equation of which axis?
4 Express $y+3=0$, in the form of $a x+b y+c=0$.

SECTION-B

Question numbers 5 to 10 carry two marks each.
In the given figure, ABC is a triangle in which $\angle \mathrm{BAC}=30^{\circ}$. Show that BC is equal to the radius 2 of the circumcircle of $\triangle A B C$ whose centre is O.

A die is thrown 50 times and it showed the number 1, 23 times. Find the probability of getting 2 a number other than 1 in the next throw of the die.

7 The curved surface area of a cone is 12320 sq cm . If the radius of its base is 56 cm , find its height.

In the given figure, O is the centre of the circle. If $\mathrm{BD}=\mathrm{DC}$ and $\angle \mathrm{DBC}=30^{\circ}$, find the measures of $\angle \mathrm{BAC}$ and $\angle \mathrm{BOC}$.

Eleven bags of wheat flour contain the following weights of flour (in kg):
$4.97,5.05,5.08,5.03,5.00,5.06,5.08,5.07,5.04,5.00,4.98$.
Find the probability that any one of these bags chosen at random contains more than 5 kg of flour.

PQRS is a parallelogram with diagonals PR and QS intersecting at a point E. If ar ($\Delta \mathrm{SEP})+$ ar 2 $(\triangle Q E R)=12 \mathrm{~cm}^{2}$, find area of parallelogram PQRS.

SECTION-C

Question numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.

PQRTS is a pentagon. A line through T meets QR produced in U such that $S R$ || UT. Show that $\operatorname{ar}(\mathrm{PSUQ})=\operatorname{ar}(\mathrm{PQRTS})$.

Draw a line segment PQ of length 8 cm . Draw $\frac{1}{4} P Q$, using compass and ruler.
In $2 x+y=13$, express y in terms of x. Also find three solutions of the above equation and 3 draw its graph.

The median of the following observations arranged in ascending order is 24 . Find x.
$14,18 x+2, x+4,30,34$
Using the value of x, find the mean of the above data.
If $x=-1, y=3$ is a solution of the linear equation $3 a x+4 a y=9$ then find value of a For this value of $a, 3$ determine value of b from the equation
$(2 b+1)-3(a+2)+4=0$.

If the total surface area of solid sphere is $98.56 \mathrm{~cm}^{2}$, then find the radius of the sphere.

SECTION-D

Question numbers 21 to 31 carry four marks each.

Prove that the angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

23 Draw the graphs of the following equations on the same graph sheet : $x=4, x=2, y=1, y-3=0$. Also, find the area enclosed between these lines.
Prove that the diameter of a circle that bisects a chord also bisects the angle subtended by the 3 chord at the centre of the circle.

Convert the following frequency distribution into a continuous grouped frequency table :

Class - Interval	Frequency
$150-153$	7
$154-157$	7
$158-161$	15
$162-165$	10
$166-169$	5
$170-173$	6

In which intervals would 153.5 and 166.5 be included?

Two types of water tankers are available in shop. One is m cubical form of 4 $2 \mathrm{~m} \times 2 \mathrm{~m} \times 2 \mathrm{~m}$ and the other is in cylindrical form of radius 2 m and height 1 m .

The shopkeeper advised to take cylindrical tank for donation.
(a) Calculate the volumes of both containers.
(b) Which value is depicted by shopkeeper ?

Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$ and $\mathrm{AC}-\mathrm{AB}=2.4 \mathrm{~cm}$.
A pair of opposite angles of a parallelogram are $40 x$ and $50 y$. Write a linear equation which 4 satisfies this data. Also draw the graph for the same.

In the given figure, O is any point in the interior of parallelog
$(\Delta \mathrm{POQ})+\operatorname{ar}(\Delta \mathrm{SOR})=\operatorname{ar}(\Delta \mathrm{POS})+\operatorname{ar}(\Delta \mathrm{QOR})=\frac{1}{2}[\operatorname{ar}(\| \mathrm{gm} \mathrm{PQRS})]$.

Age (in years)	$14-23$	$24-33$	$34-43$	$44-53$	54 and more
No. of Workers	38	27	86	46	3

If a worker is selected at random, find the probability that the age of the worker is :
(i) 44 years or more.
(ii) upto 43 years.
(iii) in age group of 34-53 years.
(iv) under 54 but more than or equal to 34 years

A hollow cylindrical iron pipe is 21 m long. Its outer and inner diameters are 4 10 cm and 6 cm respectively. Find the volume of the iron used in making the pipe. Also find the outer surface area of pipe.

27 The marks out of 100 of 80 students of a class are given below. Construct a histogram to represent the data.

Marks	$10-20$	$20-30$	$30-50$	$50-70$	$70-100$
No of students	7	15	18	20	10

Water is supplied to a city population from a river through a cylindrical pipe. The diameter of the cross section of pipe is 20 cm , the speed of water through the pipe is 18 km per hour. Find the quantity of water in litres which is supplied to the city in 4 hours.

SECTION-E (Open Text)

(* Please ensure that open text of the given theme is supplied with this question paper.) Theme : Quadrilateral in Architecture, WAH TAJ.
A recent survey found that the ages of workers in a factory is distributed as follows :
A recent survey found that the ages of workers in a factory is distributed as follows :

Prove that if in a parallelogram $A B C D$ (see figure) diagonal $A C$ bisects $\angle A$, then
(i) it also bisects $\angle \mathrm{C}$.
(ii) $A B C D$ is a rhombus.

Show that in the given figure of triangle $A B C$, if mid-points of sides $A B, B C$ and $A C$ are joined, then triangle is divided into four congruent triangles.

[^0]
[^0]: -o000000-

