Q10. Prove that :
$$\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$$

Q11. Find the mean deviation about the median of the following data:

Class:	0-6	6-12	12-18	18-24	24-30
Freq.:	8	10	12	9	5

Q12. Prove that: $41^n - 14^n$ is a multiple of 27 by using the principle of mathematical induction for all $n \in N$.

Q13. If find
$$\frac{Z_1 + Z_2 + 1}{Z_1 - Z_2 + i}$$

- Q14. Show that: $\tan 3x \tan 2x \tan x = \tan 3x \tan 2x \tan x$
- Q15. Convert into the polar form.
- Q16. Prove using principle of mathematical induction for all $n \in N$:
- Q17. Solve and represent the solution graphically on number line: 2(x-1) < x+5, 3(x+2) > 2-x
- Q18. Solve the equation

by factorization method only.

Q19. Rewrite the following statement with "if-then" in five different ways conveying the same meaning.

"If a natural number is even, then its square is also even."

Section - C

Q20. A college awarded 38 medals in football, 15 in basketball and 20 in cricket. If these medals went to a total of 58 men and only 3 men got medals in all three sports, how many of them received medals in exactly two of three sports.

Q21. If
$$\tan x = \frac{3}{4}$$
, $\pi < x < \frac{3\pi}{2}$; find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$

Q22. Calculate standard Deviation for following distribution:

Marks:	20-30	30-40	40-50	50-60	60-70	70-80	80-90
No. of	3	6	13	15	14	5	4
students							

Q23. Solve:
$$2x^2 - (3 + 7i)x - (3 - 9i) = 0$$

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1

Q25. Using principle of mathematical induction, prove that

for all
$$n \in N$$
.

Q26. (A) Find the principle solution of(2)(B) Find the general solution of(4)

Budha Dal Public School Patiala (19 Sept. 15)

UNIT-I

Class-XI (SET - B)

(Non-Med, Comm, Hum) <u>Mathematics</u>

Time: 3 hrs.

Marks: 100

Note: All the questions are compulsory

- 2) Q 1 to 6 carry 1 mark each.
- 3) Q 7 to 19 carry 4 marks each.
- 4) Q 20 to 26 carry 6 marks each.

SECTION - A

- Q1. Find the multiplicative inverse of
- Q2. Check whether the given statement is true or false?

"All integers are positive or negative."

Q3. Solve -12x > 30 Where is an integer.

 $-\sqrt{64!}$ Convert 6 radians into degree measure.

Q5. If , write P(X).

Q6. Write the following in the set builder form: $\{2, 4, 8, 16, 32\}$

Section - B

Q7. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Q8. Solve
$$\frac{2x-1}{3} \ge \frac{3x-2}{4} - \frac{(2-x)}{5}$$

Q9. Verify De Morgan's Law for the given sets.
 $U = \{1, 2, 3, 4, 5, 9, 10\}, A = \{1, 9, 10\}, B = \{1, 2, 4, 5, 10\}$

- Q9. Prove that $Cos 6x = 32 \cos^6 x 48 Cos^4 x + 18 Cos^2 x 1$
- Q10. Prove that $x^{2n} y^{2n}$ is divisible by x + y by using the principle of mathematical induction for all .
- Q11. Rewrite the following statement with "if-then" in five different ways conveying the same meaning.

"If a natural number is odd, then its sqaure is also odd."

Q12. If then show that
$$\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$$
.

Q13. Solve: $\frac{x}{2} \le \frac{5x-2}{3} - \frac{(7x-3)}{5}$

Q14. Convert $\frac{1+3i}{1-2i}$ into the polar form.

Q15. Verify De Morgan's Law for the following set:

$$U = \{7, 8, 11, 15, 21, 27, 28\}, A = \{8, 11, 21\}, B = \{7, 15, 21, 27, 28\}$$

Q16. Calculate the mean deviation from median of the following data:

Wages/week (in Rs.)	10-20	20-30	30-40	40-50	50-60	60-70	70-80
No. of workers	4	6	10	20	10	6	4

- Q17. If the arcs of same lengths in two circles subtend angle 65° and 110° at the centre. Find the ratio of their radii.
- Q18. Solve the equation $x^2 4x + 13 = 0$ by factorization method only.

Q19. Solve and represent the solution graphically on number line:

$$3x-7 > 2(x-6), 6-x > 11-2x$$

Section - C

Q20. a) Find the principle solution of

b) Find the general solution of Sin x + Sin 3x + Sin 5x = 0 (4)

Q21. Using principle of mathematical induction prove for all

Q22. Solve $x^2 - (7-i) x + (18-i) = 0$ over C

Q23. Calculate the standard deviation for the following distribution

Q25. In a survey of 60 people, it was found that 25 read newspaper H, 26 read newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and T, 8 read both T and I, 3 read all newspapers, find(i) the number of people who read at least one of the newspaper.(ii) the number of people who read exactly one newspaper.

Q26. Find if
$$Cos x = -\frac{1}{3}$$
, x in quadrant III.

Budha Dal Public School Patiala (19 Sept. 15)

<u>UNIT-I</u>

Class-XI (SET - A)

(Non-Med, Comm, Hum) Mathematics

Time: 3 hrs.

Marks: 100

Note: All the questions are compulsory

- 2) Q 1 to 6 carry 1 mark each.
- 3) Q 7 to 19 carry 4 marks each.
- 4) Q 20 to 26 carry 6 marks each.

SECTION - A

- Q1. Convert 4 radians into degree measure.
- Q2. Solve where is an integer.

Q5. Write the contrapositive of the following statement:

"If a triangle is equilateral, it is isosceles."

Q6. Find the multiplicative inverse of $\sqrt{5} + 3i$.

Section-B

Q7. Prove that: $\frac{Sin 5x - 2Sin 3x + Sinx}{Cos 5x - Cos x} = \tan x$

Q8. Prove using principle of mathematical induction of all $n \in N$.