Q10. Prove that : $\frac{\operatorname{Cos} 4 x+\operatorname{Cos} 3 x+\operatorname{Cos} 2 x}{\operatorname{Sin} 4 x+\operatorname{Sin} 3 x+\operatorname{Sin} 2 x}=\operatorname{Cot} 3 x$

Q11. Find the mean deviation about the median of the following data:

Class:	$0-6$	$6-12$	$12-18$	$18-24$	$24-30$
Freq.:	8	10	12	9	5

Q12. Prove that: $41^{n}-14^{n}$ is a multiple of 27 by using the principle of mathematical induction for all $n \in N$.

Q13. If

$$
\text { find }\left|\frac{Z_{1}+Z_{2}+1}{Z_{1}-Z_{2}+i}\right|
$$

Q14. Show that: $\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$

Q15. Convert into the polar form.
Q16. Prove using principle of mathematical induction for all $n \in N$:

Q17. Solve and represent the solution graphically on number line:

$$
2(x-1)<x+5, \quad 3(x+2)>2-x
$$

Q18. Solve the equation
by factorization method only.
Q19. Rewrite the following statement with "if-then" in five different ways conveying the same meaning.
"If a natural number is even, then its square is also even."

Section - C

Q20. A college awarded 38 medals in football, 15 in basketball and 20 in cricket. If these medals went to a total of 58 men and only 3 men got medals in all three sports, how many of them received medals in exaclty two of three sports.

Q21. If $\tan x=\frac{3}{4}, \quad \pi<x<\frac{3 \pi}{2}$; find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$

Q22. Calculate standard Deviation for following distribution:

Marks:	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of students	3	6	13	15	14	5	4

Q23. Solve: $2 x^{2}-(3+7 i) x-(3-9 i)=0$

$3 x 2 y \leq 150, x+4 y \leq 80, x \leq 15, y \geq 0$

Q25. Using principle of mathematical induction, prove that
for all $n \in N$.

Q26. (A) Find the principle solution of
(B) Find the general solution of

Budha Dal Public School Patiala (19 Sept. 15)

UNIT-I
Class-XI (SET - B)
(Non-Med, Comm, Hum)
Mathematics
Time: 3 hrs.
Marks: 100
Note: All the questions are compulsory
2) Q 1 to 6 carry 1 mark each.
3) Q 7 to 19 carry 4 marks each.
4) Q 20 to 26 carry 6 marks each.

SECTION - A
Q1. Find the multiplicative inverse of
Q2. Check whether the given statement is true or false?
"All integers are positive or negative."
Q3. Solve $-12 x>30$ Where is an integer. - $-\sqrt{\text { eq }} 4$ d . Convert 6 radians into degree measure.

Q5. If
, write $P(X)$.
Q6. Write the following in the set builder form: $\{2,4,8,16,32\}$

Section - B

Q7. If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Q8. Solve $\frac{2 x-1}{3} \geq \frac{3 x-2}{4}-\frac{(2-x)}{5}$
Q9. Verify De Morgan's Law for the given sets.

$$
U=\{1,2,3,4,5,9,10\}, A=\{1,9,10\}, B=\{1,2,4,5,10\}
$$

Q9. Prove that $\operatorname{Cos} 6 x=32 \cos ^{6} x-48 \operatorname{Cos}^{4} x+18 \operatorname{Cos}^{2} x-1$

Q10. Prove that $x^{2 n}-y^{2 n}$ is divisible by $x+y$ by using the principle of mathematical induction for all

Q11. Rewrite the following statement with "if-then" in five different ways conveying the same meaning.
"If a natural number is odd, then its sqaure is also odd."
Q12. If then show that $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$.
Q13. Solve: $\frac{x}{2} \leq \frac{5 x-2}{3}-\frac{(7 x-3)}{5}$

Q14. Convert $\frac{1+3 i}{1-2 i}$ into the polar form.
Q15. Verify De Morgan's Law for the following set:

$$
U=\{7,8,11,15,21,27,28\}, A=\{8,11,21\}, B=\{7,15,21,27,28\}
$$

Q16. Calculate the mean deviation from median of the following data:

Wages/week (in Rs.)	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of workers	4	6	10	20	10	6	4

Q17. If the arcs of same lengths in two circles subtend angle 65° and 110° at the centre. Find the ratio of their radii.
Q18. Solve the equation $x^{2}-4 x+13=0$ by factorization method only.

Q19. Solve and represent the solution graphically on number line:

$$
3 x-7>2(x-6), 6-x>11-2 x
$$

Section - C

Q20. a) Find the principle solution of
b) Find the general solution of $\operatorname{Sin} x+\operatorname{Sin} 3 x+\operatorname{Sin} 5 x=0$

Q21. Using principle of mathematical induction prove for all

Q22. Solve $x^{2}-(7-i) x+(18-i)=0$ over C
Q23. Calculate the standard deviation for the following distribution

Q25. In a survey of 60 people, it was found that 25 read newspaper $H, 26$ read newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and $\mathrm{T}, 8$ read both T and $\mathrm{I}, 3$ read all newspapers, find
(i) the number of people who read at least one of the newspaper.
(ii) the number of people who read exactly one newspaper.

Q26. Find if $\operatorname{Cos} x=-\frac{1}{3}, x$ in quadrant III.

$$
\text { if } \operatorname{Cos} x=-\frac{1}{3}, x \text { in quadrant III. }
$$

Budha Dal Public School Patiala (19 Sept. 15)

UNIT-I
Class-XI (SET - A)
(Non-Med, Comm, Hum)
Mathematics
Time: 3 hrs.
Marks: 100
Note: All the questions are compulsory
2) Q 1 to 6 carry 1 mark each.
3) Q 7 to 19 carry 4 marks each.
4) Q 20 to 26 carry 6 marks each.

SECTION - A
Q1. Convert 4 radians into degree measure.
Q2. Solve where is an integer.
Q3. If , write $P(A)$

$$
\{5,25,125,625\}
$$

Q5. Write the contrapositive of the following statement:
" If a triangle is equilateral, it is isosceles."
Q6. Find the multiplicative inverse of $\sqrt{5}+3 i$.

Section-B

Q7. Prove that: $\frac{\operatorname{Sin} 5 x-2 \operatorname{Sin} 3 x+\operatorname{Sin} x}{\operatorname{Cos} 5 x-\operatorname{Cos} x}=\tan x$
Q8. Prove using principle of mathematical induction of all $n \in N$.

